Schattenblick → INFOPOOL → MEDIZIN → FACHMEDIZIN


GENETIK/510: Neil-Proteine helfen beim Entfernen epigenetischer Markierungen (idw)


Johannes Gutenberg-Universität Mainz - 12.01.2016

Neil-Proteine helfen beim Entfernen epigenetischer Markierungen

Wissenschaftler am Institut für Molekulare Biologie erforschen Prozess der DNA-Demethylierung


Wissenschaftler am Institut für Molekulare Biologie (IMB) in Mainz haben ein fehlendes Puzzleteil entdeckt, das erklärt, wie epigenetische Markierungen von der DNA entfernt werden. Die aktuelle Forschung zur sogenannten DNA-Demethylierung gibt Aufschluss über einen Prozess, der in der menschlichen Entwicklung und bei Krankheiten wie Krebs eine fundamentale Rolle spielt.

Das Fachgebiet der Epigenetik beschäftigt sich mit vererbbaren Veränderungen in der Genexpression, die nicht von Änderungen in der DNA-Sequenz selbst herrühren. Epigenetische Prozesse spielen eine zentrale Rolle bei einer Reihe von Krankheiten, etwa bei kardiovaskulären und neurodegenerativen Erkrankungen ebenso wie bei Krebs. Ein bedeutender epigenetischer Prozess ist die DNA-Methylierung, bei der eine der vier Basen der DNA durch Anhängen einer Methylgruppe markiert wird. Üblicherweise resultiert eine DNA-Methylierung in reduzierter Aktivität der benachbarten Gene.

Wie Methylmarker an die DNA angeheftet werden, ist bereits gut erforscht. Aber wie die Markierungen im Prozess der DNA-Demethylierung wieder entfernt und somit Gene reaktiviert werden, ist noch nicht vollständig verstanden. In ihrer aktuellen Studie im Fachjournal Nature Structural and Molecular Biology stellen Wissenschaftler des IMB mit Neil1 und Neil2 zwei Proteine vor, die für die Demethylierung der DNA wichtig sind. "Diese Proteine sind ein fehlendes Bindeglied in der Kette der Ereignisse, die erklären, wie DNA effizient demethyliert werden kann", erklärt Lars Schomacher, Erstautor des Aufsatzes.

Interessanterweise sind bei der DNA-Demethylierung Proteine beteiligt, die auch bei der DNA-Reparatur zum Einsatz kommen. Somit sind epigenetische Genregulation und Genomstabilität miteinander verknüpft. Schomacher und seine Kollegen haben nun mit Neil1 und Neil2 zwei weitere Reparaturfaktoren identifiziert, die nicht nur die Integrität der DNA schützen, sondern auch an der DNA-Demethylierung beteiligt sind. Die Forscher konnten zeigen, dass mithilfe der Neil-Proteine die Aktivität eines weiteren Proteins, Tdg, verstärkt wird. Tdg ist als zentrales Enzym der DNA-Demethylierung bekannt.

Sowohl die Neil-Proteine als auch Tdg sind essenziell für die Embryonalentwicklung. Schomacher et al. führten Experimente durch, in denen sie Froschembryonen in einem frühen Entwicklungsstadium jeweils eines dieser Proteine entfernten. Sie fanden heraus, dass die Embryonen in der Folge gravierende Probleme in der Entwicklung aufwiesen und noch vor Erreichen des Erwachsenenalters starben.

Fehler beim Anheften und Entfernen von Methylmarkern an die DNA führen generell zu Störungen in der Entwicklung und zu Krebs, bei dem Zellen entarten und sich unkontrollierbar vermehren. Die Entschlüsselung der Proteine, die an der DNA-Demethylierung beteiligt sind, wird zum Verständnis dieser und anderer Krankheiten beitragen und möglicherweise neue Behandlungswege eröffnen.


Veröffentlichung:
Schomacher L*, Han D*, Musheev MU*, Arab K, Kienhöfer S, von Seggern A and Niehrs C (2016). Neil DNA glycosylases promote substrate turnover by Tdg during DNA demethylation. Nature Struct Mol Biol, DOI: 10.1038/nsmb.3151 [Epub ahead of print]. (* indicates equal contribution)

Weitere Informationen über die Forschung der Niehrs-Gruppe unter:
http://www.imb.de/niehrs

• Das Institut für Molekulare Biologie (IMB) gGmbH

Das Institut für Molekulare Biologie gGmbH (IMB) ist ein Exzellenzzentrum der Lebenswissenschaften, das 2011 gegründet wurde. Die Forschung am IMB konzentriert sich auf drei topaktuelle Gebiete: Epigenetik, Entwicklungsbiologie und Genomstabilität. Das Institut ist ein Paradebeispiel für eine erfolgreiche Zusammenarbeit zwischen öffentlichen Einrichtungen und einer privaten Stiftung. Die Boehringer Ingelheim Stiftung hat 100 Millionen Euro für einen Zeitraum von zehn Jahren bereitgestellt um die laufenden Kosten für die Forschung am IMB zu decken, das Land Rheinland-Pfalz noch einmal ca. 50 Millionen Euro für den Bau des hochmodernen Forschungsgebäudes auf dem Campus der Johannes Gutenberg-Universität Mainz. Weitere Informationen zum IMB finden unter
http://www.imb.de

Die Boehringer Ingelheim Stiftung
Die Boehringer Ingelheim Stiftung ist eine rechtlich selbstständige, gemeinnützige Stiftung und fördert die medizinische, biologische, chemische und pharmazeutische Wissenschaft. Eingerichtet wurde sie 1977 von Hubertus Liebrecht, einem Mitglied der Gesellschafterfamilie des Unternehmens Boehringer Ingelheim. Mit ihrem Perspektiven-Programm "Plus 3" und den "Exploration Grants" für selbstständige Nachwuchswissenschaftler fördert sie bundesweit exzellente unabhängige Nachwuchsforschergruppen. Sie dotiert den internationalen Heinrich-Wieland-Preis sowie Preise für Nachwuchswissenschaftler. Die Boehringer Ingelheim Stiftung fördert für zehn Jahre den wissenschaftlichen Betrieb des 2011 eingeweihten Instituts für Molekulare Biologie (IMB) an der Johannes Gutenberg-Universität Mainz mit 100 Millionen Euro. Seit 2013 fördert sie ebenfalls über zehn Jahre die Lebenswissenschaften an der JGU mit insgesamt 50 Millionen Euro. Weitere Informationen zur Boehringer Ingelheim Stiftung unter
http://www.boehringer-ingelheim-stiftung.de

Weitere Informationen finden Sie unter

http://www.uni-mainz.de/presse/74139.php
Pressemitteilung

http://www.nature.com/nsmb/journal/vaop/ncurrent/full/nsmb.3151.html
Veröffentlichung

http://www.imb.de
Institut für Molekulare Biologie (IMB)

Kontaktdaten zum Absender der Pressemitteilung stehen unter:
http://idw-online.de/de/institution218

*

Quelle:
Informationsdienst Wissenschaft - idw - Pressemitteilung
Johannes Gutenberg-Universität Mainz, Petra Giegerich, 12.01.2016
WWW: http://idw-online.de
E-Mail: service@idw-online.de


veröffentlicht im Schattenblick zum 14. Januar 2016

Zur Tagesausgabe / Zum Seitenanfang