Schattenblick → INFOPOOL → MEDIZIN → FAKTEN


FORSCHUNG/3339: Neue Einblicke in die Organisation der Plasmamembran (idw)


Universitätsmedizin Göttingen / Georg-August-Universität - 15.07.2015

Neue Einblicke in die Organisation der Plasmamembran

Wissenschaftler des CNMPB decken die Organisation langlebiger Proteinansammlungen in der Plasmamembran lebender Zellen auf und identifizieren essentielle Schlüsselfaktoren. Veröffentlicht in Nature Communications.


(cnmpb/umg) Die Plasmamembran grenzt lebende Zellen gegen ihre Umwelt ab. Sie enthält eine Vielzahl von Proteinen, die Ansammlungen bilden und wichtige Funktionen unter anderem beim Stoffaustausch sowie bei der Zell-Zell-Kommunikation haben. Ein Forscherteam um Prof. Dr. Silvio O. Rizzoli vom Exzellenzcluster und DFG-Forschungszentrum für Mikroskopie im Nanometerbereich und Molekularphysiologie des Gehirns (CNMPB) der Universitätsmedizin Göttingen (UMG) hat neue beeindruckende Einblicke in die Organisation der Plasmamembran gewonnen. Die Erkenntnisse der Forscher: In den langlebigen Proteinansammlungen sind funktionell verwandte Faktoren in ähnlichen Regionen angereichert. Schlüsselfaktor für die Bildung und Stabilisierung solcher Proteinansammlungen ist Cholesterin. Für die Abgrenzung der Ansammlungen ist Aktin, ein Baustein des Zellskeletts, zuständig. Die Forschungsergebnisse wurden veröffentlicht in der Fachzeitschrift "Nature Communications".


Originalveröffentlichung:
Saka SK, Honigmann A, Eggeling C, Hell SW, Lang T, Rizzoli SO (2014) Multiprotein assemblies underlie the mesoscale organization of the plasma membrane. NAT COMMUN, 5: 4509.

"Anders als bisher vermutet, sind die Proteine der Plasmamembran in Clustern organisiert, die nicht zufällig, sondern in definierten Mustern angeordnet vorliegen", sagt Dr. Sinem Saka, Erst-Autorin der Publikation und Postdoc am Institut für Neuro- und Sinnesphysiologie der UMG. Mit Unterstützung von Wissenschaftlern des Göttinger Max-Planck-Instituts für Biophysikalische Chemie und des LIMES Instituts in Bonn untersuchte das Göttinger Forscherteam die zu Grunde liegenden Mechanismen. Um simultan alle Proteine in der Plasmamembran betrachten zu können, schleusten die Forscher ein unnatürliches Aminosäureanalogon in die Proteine von Säugerzellen. Kombiniert mit einer Fluoreszenzmarkierung und mittels hoch-auflösender STED-Mikroskopie (STED: stimulated emission depletion) konnten sie so die Proteine in der Plasmamembran sichtbar machen.

FORSCHUNGSERGEBNISSE IM DETAIL

Eine Vielzahl von Proteinen bildet heterogene Proteinreiche Domänen auf der Plasmamembran, die von Proteinarmen Bereichen umgeben sind. Die Anwendung weiterer experimenteller Strategien zur genaueren Charakterisierung der Proteinreichen Areale zeigte überraschend, dass das Muster gegenüber verschiedenen Veränderungen resistent ist.

SCHLÜSSELFAKTOREN

Als Schlüsselfaktor für die Bildung der Multiproteinansammlungen wurde Cholesterin identifiziert. Die Entfernung von Cholesterin von der Plasmamembran verursachte einen vollständigen Zusammenbruch der Proteinansammlungen. Die erneute Zugabe von Cholesterin kehrte diesen Effekt wieder um. Für die Abgrenzung der Areale spielt Aktin, ein wichtiger Bestandteil des Zellskeletts, eine bedeutende Rolle: Wurde Aktin zerstört, vergrößerten sich die Proteinansammlungen, wobei das zugrundeliegende Muster jedoch bestehen blieb.

Innerhalb der Ansammlungen liegen einzelne Proteine im Zentrum oder der Peripherie konzentriert vor. Diese Beobachtung legt nahe, dass funktionelle Protein-Protein-Wechselwirkungen zur Bildung spezialisierter Subdomänen führen. Die Wissenschaftler schließen daraus, dass die Bildung von Proteinansammlungen ein grundlegendes Prinzip der Membranorganisation darstellt. Dabei scheint die Verteilung der meisten Faktoren durch deren spezifische Aktivität beeinflusst zu werden.

Besondere Bedeutung haben diese Erkenntnisse für die Untersuchung der Proteinverteilung in der Membran von Zellen, bei denen z.B. eine Störung der Zell-Zell-Kommunikation vorliegt.

Prof. Dr. Silvio O. Rizzoli leitet seit März 2012 das Institut für Neuro- und Sinnesphysiologie an der Universitätsmedizin Göttingen und ist Mitglied des Göttinger Exzellenzclusters und DFG-Forschungszentrums für Mikroskopie im Nanometerbereich und Molekularphysiologie des Gehirns (CNMPB). Seine Forschungsschwerpunkte sind die molekularen Prozesse der Signalübertragung zwischen Nervenzellen. Prof. Rizzoli benutzt hochauflösende Lichtmikroskopie, um Transport und Funktion von intrazellulären "Bläschen", so genannten Vesikeln, in den Synapsen der Nervenzellen zu verstehen. Erst kürzlich wurde Prof. Rizzoli für seine exzellente Forschung von der Europäischen Union mit einem "ERC Consolidator Grant" ausgezeichnet.


WEITERE INFORMATIONEN
Universitätsmedizin Göttingen
Georg-August-Universität
Institut für Neuro- und Sinnesphysiologie
Prof. Dr. Silvio O. Rizzoli
Humboldtallee 23, 37073 Göttingen
www.rizzoli-lab.de


CNMPB - Zentrum für Mikroskopie im Nanometerbereich und Molekularphysiologie des Gehirns
Exzellenzcluster 171
DFG-Forschungszentrum 103
Wissenschaftliche Koordination, Presse & Öffentlichkeitsarbeit
Dr. Heike Conrad
heike.conrad@med.uni-goettingen.de
Humboldtallee 23, 37073 Göttingen
www.cnmpb.de

Kontaktdaten zum Absender der Pressemitteilung stehen unter:
http://idw-online.de/de/institution493

*

Quelle:
Informationsdienst Wissenschaft - idw - Pressemitteilung
Universitätsmedizin Göttingen - Georg-August-Universität, Stefan Weller, 15.07.2015
WWW: http://idw-online.de
E-Mail: service@idw-online.de


veröffentlicht im Schattenblick zum 17. Juli 2015

Zur Tagesausgabe / Zum Seitenanfang